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A class of second-order differential equations and related 
first-order systems 

J S R Chisholm and A K Common 
Mathematical Institute, University of Kent, Canterbury, Kent CT2 7NZ. UK 

Received 13 April 1987 

Abstract. A class of second-order non-linear differential equations which arises in several 
branches of mathematical physics is considered. I t  is shown that equations of this class 
may be factorised into first-order equations of ‘Riccati type’. Conditions are obtained, on 
the coefficient functions of the second-order equations, for the first-order equations to be 
of matrix Riccati form, whose solutions have a finite superposition property. The factorisa- 
tion into first-order equations is then not unique, and there is an alternative first-order set 
of equations whose solutions do not have this superposition property. 

A second-order equation arising in the theory of pellet fusion processes is investigated 
in detail. Solutions are obtained when the corresponding first-order equations are of matrix 
Riccati from and shown to be equivalent to solutions derived by alternative methods. 
Lagrangian systems giving rise to equations of the class are also considered. 

1. Introduction 

A class of non-linear ordinary differential equations of particular interest in mathemati- 
cal physics is defined by the equation 

Y ” ( X )  + ( E o ( x )  + E , ( X ) Y ( X ) ) Y ’ ( X )  + F”(X1-t F , ( x ) . Y ( x )  + F 2 ( x ) ( y ( x ) ) 2  

+ F 3 ( x ) ( y ( x ) ) 7  = 0 (1.1) 

where Eo,  E , ,  Fo ,  F ,  , F,, F3 are given functions of the independent variable x. Four 
particular examples are as follows. 

( i )  The scalar field equation in one-dimensional (p4 field theory 

where k is a constant. 
( i i )  The equation 

y” + (3 y + 1 )yy’  + (3  y - 1 ) y  ’ + c = 0 (1.3) 
where y, c are constant, which arose in the study of the pellet fusion process by Ervin 
et a1 (1984). 

( i i i )  An equation governing spherically symmetric expansion or collapse of a 
relativistically gravitating mass derived by McVittie (1933, 1967, 1984) which is of the 
form 

y”+ ( c + y ) y ’ -  ( d  + cy + y’))’ = 0 ( 1.4) 
where c, d are constants. 

0305-4470/87/165459 + 14$02.50 @ 1987 IOP Publishing Ltd 5459 
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(iv) An equation which can be thought of as a one-dimensional analogue of the 
boson ‘gauge theory’ equations introduced by Yang and Mills (1954). The equation 
is of the form 

[ d / d x + f ( x ) + g ( x ) y l [ d / d x + f ( x ) + g ( x ) y l y + k ( x ) + h ( x ) y  = O  (1.5) 

and is equivalent to (1.1) with 

Eo = 2 f  E ,  = 3 g  F,, = k F,=f’+f’+h 

F2=g’+2fg  F3= gz. (1.6) 

Our investigation was initially stimulated by the work of McVittie (1933, 1984), 
who obtained solutions of (1.4) which were also solutions of the Riccati equations. 
The generalised derivative 

D , = d / d x + f ( x ) + g ( x ) y  (1.7) 

occurring in (1.5) is termed the ‘Riccati operator’, since the Riccati equation can be 
written 

(1.8) 

The Riccati operator is linear in d / d x  and y and we say that (1.8) is of ‘index 1’. 
Likewise, since (1.1) is formed by the quadratic action of d / d x  and y on y itself, we 
say that this equation has ‘index 2’. 

In this paper, we investigate the equivalence of equations of the general form (1.1) 
to a pair of coupled equations of ‘Riccati type’ 

( 1 . 9 ~ )  

(1.96) 

where the coefficients A,,  B,,  D, are, in general, functions of x. 
In $ 2 we show that (1.1) can always be written in the form (1.9) and that this form 

is nor unique. This is to be expected since there are twelve independent coefficients 
{A , ,  B,, D,} in (1.5) while there are only six in (1.1). 

Lie studied systems of n first-order non-linear equations (Lie and Engel 1893, Lie 
and Scheffers 1893, see also Hermann and  Ackermann 1973), of which (1.9) is a 
particular example. He investigated the conditions for the general solution of a system 
to be expressible in terms of a finite number of particular solutions. He showed that 
the equations have this ‘superposition’ property if they are associated with a finite- 
dimensional Lie algebra. In recent years, numerous authors have studied the 
classification of those non-linear differential equations which are associated with the 
classical Lie algebras. ( A  selection of references is given by Winternitz (1983).) In 
B 3 we investigate when (1.9) belongs to one of these classes. We shall show that if 
the coefficients in the original index 2 equation (1.1) satisfy the conditions 

D,y + h ( x )  = y’ + h + fy + gy ’ = 0. 

y’ = A ,  + B,y  + B2z + D, y 2 +  D,yz + D,Z’ 

z‘ = A> + B3y + B,z + D3y2 + D,yz + D,z’ 

(1.10a) 

(1.10b) 

then an equivalent set of index 1 equations can be related to the Lie algebra of the 
projective group PL( n, R )  with n = 2.  The equation may then be written in the matrix 
Riccati form 

W ’ = A + B W +  W C +  W D W  (1.11) 
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where 

contains the unknown functions and 

(1.12) 

(1.13) 

c = C ( x )  D = (D i (x )D , (x ) )  

consists of given functions. The function C can be absorbed into B ,  and B,, and for 
(1.9) to be a ‘Lie system’ with an associated finite-dimensional group, the D, in (1.9) 
are not independent. The form (1.1 1 )  is particularly useful since it may be integrated 
at least formally, as we show in 5 3. 

In their study of (1.3), Ervin et a1 (1984) demonstrated that solutions in  terms of 
trigonometrical functions exist for y = $, and $ .  We will show in B 4 that the values 

then be solved exactly. The third root y = 4 corresponds to a soluble degenerate set (1.9). 
In the final section, we present our conclusions on this work and suggest further 

areas of study. 

? = l  3 ,  2 are precisely the values when (1.9) become a Lie system; the equations can 

2. Factorisation of the index 2 equation 

If y, z satisfy (1.9) and we define 

w ( x )  = D d X )  - D A X )  

then it is easy to show that w ( x )  satisfies an  equation of the form ( 1 . 9 ~ )  with D5 
identically zero. Therefore, we can take our index 1 equations to be 

y ’ = A , + B l y + B z z + D , ~ ~ ’ + D z y z  ( 2 . 1 ~ )  

z ’  = A’ + B,y + B,z + D,y’+ D 4 y z  + D,z’. (2 . lb)  

Then from ( 2 . 1 ~ )  

z = ( y ’ - A , -  Bly  - Dly’) / (Bz+ Dzy).  (2.2) 

(Note that if we had used ( 1 . 9 ~ )  with D5 # 0 we would have had to solve a quadratic 
equation for z in terms of y and y ’ . )  Substituting for z in (2 . lb )  we obtain the 
second-order differential equation for y :  

(y”-Aj  - B ’ , y - B l y ’ - D l y z - 2 D l y y ’ ) ( B z + D z y )  

- ( y ’ - A ,  - B , y - D , y ’ ) ( B ~ +  D i y + D z y ‘ )  

= ( A 2  + B,y + D3y’) ( Bz + Dzy 1’ 
+ (B4 + Bz + D?Y)(Y‘-  A i - Biy - Diy2)  

+ D , ( y ’ - A l  - B l y - D i ~ ’ ) ’ .  (2.3) 

In general, if this equation is to be of the form ( 1 . 1 )  we must choose either 

D 1 -  = D  2 - 0  = ( 2 . 4 ~ )  
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(2.4b) 

The choice ( 2 . 4 ~ )  reduces ( 2 . 1 ~ )  to a linear equation. 

of true 'Riccati form'. In this case, comparing (2.3) with (1.1) gives 
We will confine our study to the choice (2.4b), so that both of equations (2.1) are 

( 2 . 5 ~ )  

(2.5b) 

( 2 . 5 ~ )  

(2.5d) 

(2.5e) 

(2.5f) 

provided that B , ( x )  # 0 in the range considered. 
Given then the six coefficients in ( l . l ) ,  we can fit them by choosing the nine 

functions { A , ,  A 2 ,  B , ,  B 2 ,  B , ,  B 4 ,  D , ,  D 3 ,  D4} in (2.5). Three of these can be chosen 
arbitrarily, and we take them to be A , ( x ) ,  B , ( x )  and B , ( x ) ,  with B2 f 0. Then (2.5b) 
and (2.5f) can be solved giving two possible choices of the coefficients D4, D,  of 
quadratic terms: 

( 2 . 6 ~ )  

(2.66) 

Then B4,  A 2 ,  B3 and D3 are in turn determined by (2 .5u) ,  ( ~ S C ) ,  (2.5d) and (2.5e). 
Note that if we had chosen a set of arbitrary coefficients different from { A , ,  B I ,  B?} ,  
we would have had to solve a differential equation to obtain some of the remaining 
coefficients. If we make the particular choice B , ( x )  = b, B 2 ( x )  = 1, A , ( x )  = 0, where b 
is independent of x,  we obtain the following simple expressions for the remaining 
coefficients: 

D4 = -;[E I f ( E ;  - 8 F,)  "'1 
D ,  = -a[ E ,  7 (Ef  - SF,) ' '2].  

B4= -E[,-  b A? = 

D, = -Fz - Dl + bD4- ( b  + Eo)DI. 

BT = - F ,  - b(E"+ b )  
(2.7) 

These relations are simplified when b = 0, but we will see in $ 4  that it is advantageous 
in some situations to choose a non-zero value for b. It is important to note that even 
when { A , ,  B , ,  B 2 }  have been chosen, there is still a twofold ambiguity in (1.9) corre- 
sponding to the choice of sign in (2.6). 

3. Equations of Lie type 

With the particular choice of coefficients in (1.9) made in the previous section, these 
equations have the form 

y ' =  b y + z +  DIY2 

z '  = A2 + B,y + B4z + Dly2 + D ~ Y z .  
(3 . la )  

(3 . lb)  
The condition for the solutions of these equations to possess a superposition property 
is governed by Lie's fundamental result (Lie and Engel 1893, Lie and Scheffers 1893, 
see also Herrmann and Ackermann 1973) as follows. 
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Theorem. The general solution of the system of non-linear first-order differential 
equations 

(3 .2 )  

can be expressed as a superposition of a finite number m of particular solutions 
q I , ( x ) ,  . . . , u , , , ( x )  if and only if (3 .2 )  can be written in the form 

where the operators 

(3 .4 )  

generate a finite-dimensional Lie algebra. Then 

where the c&h are the structure constants of the algebra. 

If our equations (3 .1)  are to be of the form (3 .3 ) ,  the corresponding elements X L  of 
the Lie algebra will contain the operators a : ,  y a , ,  za,., yd2, zd;, y ’ d , ,  y’d, and yzd, where 
d ,  = d / d y  and d, = a/az .  The Lie algebras corresponding to the general Riccati equation 
(1 .9 )  with two dependent variables were originally obtained by Lie and Engel ( 1 8 9 3 )  
and have been studied more recently by Hlavaty et a /  (1984) .  They found that the 
algebras associated with ( 1 . 9 )  contain at most two independent operators P ( y ,  z)dy,  
Q(y,  z ) a Z  with P ( y ,  z ) ,  Q ( y ,  z )  quadratic functions of y ,  z. The algebras belong to two 
classes. 

(a )  The quadratic operators are 

XI = y2d ,  + yzd, 
2 X 2  = p a ,  + z aZ .  

(b)  The quadratic operators are 

( 3 . 6 )  

where a, p and y are arbitrary constants satisfying 1 a I + I P I + I y 1 > 0.  

Setting U ,  = y ,  u2 = z in (3 .3 )  and (3 .4) ,  equations (3 .3)  become 
Let us first consider when an algebra of class b gives the quadratic terms in (3 .1 ) .  

y ’ =  z , ( x ) ( ~ y 2 + 2 P Y z ) + z 2 ( x ) ( Y y 2 + P 2 2 )  + a y ,  2 )  

2’ = 2, ( x ) ( yy  + p z  2, + 2 2  ( x ) ( 2 yyz - a z ) + 0 ( y, 2 ) .  (3 .8)  

2 P Z I ( X )  = 0 P Z , ( X )  = 0 P Z , ( X )  = Z* (x )a .  ( 3 . 9 )  

These are equivalent to (3 .1 )  only if 

If both Z, and Z2 are identically zero, there are no quadratic terms in (3 .10,  b ) ,  which 
then reduce to a pair of coupled linear differential equations. We are interested in 
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cases when (3.1) contains quadratic terms. There are two corresponding solutions of 

a = p = 0  z, 9 0 (3.10) 

(3.9): 

and 

p = 0  Z 2 ( x )  = 0 z, z 0. (3.11) 

The solution (3.10) gives the complete algebra 

= Y ~  = {y’a:,  y2a, + 2 y ~ a , ,  ya , ,  yaz,  za,, za,, a , ,  ax} .  (3.12) 

The corresponding equations (3.8) are then 

y’ = Z,( x )  + Z , ( x ) y  + 0 + Z 2 ( x ) y 2  ( 3 . 1 3 ~ )  

z ’ =  z , ( x ) + z 4 ( x ) y + z , ( x ) z + z , ( x ) y ’ + 2 z 2 ( x ) y z  (3.13b) 

where the Z , ( x )  are the multipliers of the elements of 6k2 given in (3.12), numbering 
from left to right. Note that because of the absence of a zd, operator in -4”’ there is 
no term linear in z on the right of ( 3 . 1 3 ~ ) .  Therefore defined by (3.12) cannot be 
associated with the equations (3.1). 

For solution (3.11) and  with a 2 + 4 p y  # 0, the complete algebra is 

~ , = { a ~ ’ a ,  +?$a,, y$a, +2yyza, -az’a,,ya, +za,, a ( y a ,  - za r )+2yya , , a , , a2} .  
(3.14) 

This six-dimensional algebra is isomorphic to 0 ( 2 , 2 )  or O(3, l ) ,  depending on the 
sign of a 2 + 4 p y  (Havlicek and Lassner 1975). Remembering that in this case the 
multiplier Z ,  = 0, the corresponding differential equations are 

J” = z , (  X )  + (z,( X )  + aZ4( X))y 4- 0 az~(.l‘)J’~ ( 3 . 1 5 ~ )  

z’  = Z,( x ) + 2 yZ4( x ) y + ( z, (x ) - aZ4( x ) ) z + y z ,  ( x ) y 2 .  (3.15b) 

Once again there is no term linear in z on the RHS of ( 3 . 1 5 ~ )  and so Y2  defined by 
(3.14) cannot be associated with (3.1). Equations (3.13) and (3.15) are said to be 
‘decomposable’, while we concentrate here on ‘indecomposable’ Lie systems of 
equations. These concepts have been introduced recently by Shnider and Winternitz 
(1984). 

We must therefore examine class a, with quadratic operators given in (3.6); these 
are contained in the eight-dimensional Lie algebra 

y, = {J  ‘ d ,  +t?za;, p a ,  + 2 a _ ,  yd , ,  ya,, Z a , ,  z a : ,  d , ,  a : }  
which is isomorphic to sI(3, R ) .  In the usual notation the corresponding differential 
equations are 

’ = z, ( x ) y ’  + Z J X  )yz + O( y, 2 )  

z ‘ =  z , ( x ) y z + z 2 ( x ) z ~ + o ( J ’ ,  z ) .  

( 3 . 1 6 ~ )  

(3.166) 

These are equivalent to (3.1) if 

Z * ( x )  = 0 ( 3 . 1 7 ~ )  

and 
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Equations (3.6) and (3 .7 )  define the only classes of N = 2  Lie algebras with two 
independent quadratic operators. These are also algebras with just one quadratic 
operator. Hlavaty et a /  (1984) were not able to classify them; we have investigated 
them and have found that they d o  not lead to non-trivial examples of (3.1). So the 
only Lie algebra corresponding to non-trivial (3.1) is Yl, imposing the conditions 
(3.176) on the coefficients and the condition Z 2 = 0  upon (3.16). There is therefore no 
exact correspondence between the Lie algebra and  equations (3.1). 

The conditions (3.176) imply conditions on the coefficients of our original non-linear 
differential equation (1.1) for the existence of a corresponding system (3.1) with a 
superposition property. From ( 2 . 6 ) ,  these conditions are 

2 [ E 1  + ( E :  -8F3)’”] = E ,  F(  E:-8F3)”’ 

or, on squaring, 

E ; = 9 F 3  (1.10a) 

and 

3 F > =  E ; +  EoEl (1.106) 

as stated in § 1. We note that if (1.10a) is satisfied, the two solutions ( 2 . 6 )  become 

D - D  --LE 
1 -  4 -  3 I 

and 

D ---?E 
4 -  3 I. 

D --LE 
1 -  6 I 

So, except for degenerate systems with 

E ,  = F3= D ,  = D,=O 

if one system (3.1) associated with (1.1) is a Lie system, then the other cannot be. I t  
is therefore wrong to say that an equation ( l . l ) ,  whose coefficients satisfy (1.10), is 
‘equivalent’ to a Lie system defined by (3.1) and (3.17): i t  is also associated with a 
different system (3.1) with D ,  # D,. 

The relationship between (1.1) and two different systems (3.1) has interesting 
consequences. First, we can show that any solution y ( x )  of (1.1)  is a member of a 
solution pair { y ( x ) ,  z,(x)} of either of the associated systems (3.1), which we write as 

(3.18~1) 

(3.186) 

( 3 . 1 8 ~ )  

(3.18d ) 

where we note from (2 .5)  that taking alternative solutions for D ,  and D, gives alternative 
solutions for B3 and D3 but not for the other coefficients. Suppose that y ( x )  satisfies 
(1.1); then define z ,  by (3.18a), remembering that B 2 # 0 .  This ensures that (y, z,) 
satisfy (3.186). Conversely, assuming (3.18a, 61, we can substitute for z+ from ( 3 . 1 8 ~ )  
into (3.186), obtaining (1.1) .  The same arguments hold for (3.18c, d ) .  It is important 
to note that, in general, D: # D ;  and 0,‘ # 0 4 ;  then z ,  # z - ,  although they correspond 
to the same ‘partner function’ y ( x ) .  

y’ = A ,  + B , y  + B 2 z +  + D;y2 

2: = A? + BTy + B4z+ + D ~ J * ’ +  D l y z ,  

J J ’ =  A , +  ~ , y +  B++ D;$ 

z L = A2 + BJy + B,z- + D3 j 2  + D, y z  
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This correspondence of solutions of ( l . l ) ,  (3.18a,6) and (3.18c, d )  can be useful 
for solving some more complicated equations. First, if we eliminate the function y ( x )  
from (3.18~1, 6), we usually obtain an equation for z+(x )  of index 3. So if we can solve 
( l . l ) ,  we can use (3.18a) to give a solution ofthis index 3 equation. Second, if (3.18a, 6) 
are a Lie system and therefore soluble in closed form, we know the function y ( x )  
satisfying (3.18c, d ) ,  which is nor a Lie system. We can in fact express z-  in terms of 
z ,  and z:: subtracting ( 3 . 1 8 ~ )  from ( 3 . 1 8 ~ )  

( z - - z+)BZ=(D: -  D;),v’ 

and substituting in (3.186) gives 

z- = z+ + 0:-D; { - B l -  D;Z+ f [ ( B :  + D;z+)’ -4(A2 - z!+ + B ~ z + )  0 3  + ] 112  } 2 . (3.19) 
4( D:)’B2 

When D3 is sufficiently small, the positive square root in (3.19) has to be taken; for, 
as D3 + 0, the negative square root will tend to infinity instead of the correct solution 

when D, = 0. 
Since ( y ,  z + )  satisfy a Lie system, they obey a finite superposition principle. At 

first sight, the relationship (3.19) seems to contradict the fact that ( y ,  z - )  do  not obey 
a finite superposition principle. There is no contradition since z!+ appears in (3.19). 
So any solution z -  can be written in the form (3.19), in which z+ can be expressed in 
terms of a finite number of particular solutions ( y ,  z + )  of (3.18~1, 6). So the general 
solution z _  does satisfy a different kind of finite superposition principle, in terms of 
solutions of (3.18a, 6 )  and their derivatives. 

One of the equations mentioned in the introduction was the bi-Riccati equation 
(1.5), equivalent to (1.1) with coefficients given by (1.6). By direct substitution, we 
see that these coefficients satisfy the conditions (1.10) for the existence of a correspond- 
ing Lie system. This system can be obtained by writing 

z = y’ S f y  + gy’ 

in (l.lO), reducing the equation to 

z’+ f z+gyz+ k +  hy = O .  

This pair of first-order equations satisfies (3.176), and so forms a Lie system. There 
is a converse to this property: any equation (1.1) which corresponds to a Lie system 
can be written in the form (1.5) and (1.6). To show this, we use the conditions (1.10) 
to express (1.1) as 

yo+ ( E(,+ ~ , y ) y ’ +  F,,+ F , ~  +;( E :  + E , , E , ) ~ ’ + ; E : ~ ’  = 0. 

The coefficients in this equation will be exactly those given by (1.6) if we choose 

f =;E0 g = ; E ,  k = Fo 

k = F -1Er 
I 2 0 4 0’  

We have therefore shown that every equation of form (1.1) associated with a first-order 
Lie system is equivalent to a bi-Riccati equation of form (1.5) and (1.6). 
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The first-order equations (3.1) for y and z can then be written in the matrix Riccati 
form (1.11). This is an example of a ‘projective Riccati’ equation as there is only one 
row in the matrix D. The general solution of this type of equation is a superposition 
of n + 2 particular solutions, where n is the number of columns in D, equal to two in 
our study (Anderson 1980, Anderson et a1 1981, 1982). 

The matrix Riccati equation (1.1 1) may be linearised by introducing homogeneous 
coordinates in the standard way. Thus W ( x ) =  U(x)V- ’ (x )  satisfies (1.11) if U, V are 
{ 1 x 2} and { 1 x I}  matrices respectively, satisfying 

U ’ =  B U + A V  (3.20a) 

V’ = - DU - CV. (3.206) 

We have chosen C = 0; when A = 0 also, (3.18) may be integrated formally to give the 
solution 

U ( x )  exp( 1.‘ B(x’) dx‘) U ( 0 )  
0 

(3.21a) 

V(x) = V(0) - i,’ [ D ( x ’ )  exp( I,’ B ( x ” )  dx”) U ( O ) ]  dx’. (3.21b) 

In § 4, we use these formal integrals to study solutions of (3.20) when the coefficients 
in the corresponding equation (1.1) are constants. 

4. Equations with constant coefficients 

Let us first show how an  equation ( l . l l ) ,  with constant coefficients and with C = 0, 
may be transformed to an equivalent equation with A = 0. Substitute W ( x )  = W ( x )  + P 
into (1.11) where 

is a constant vector. Then W satisfies the equation 

W ’ =  A +  B W + W C + W D W  

where 

B, + P I  D ,  E?+ PI D2 B = (  
B ,+  P2Dl E,+ PZD, 

C = ( Dl  P I  + D2P2) D=(DI D2). 

(4.1) 

( 4 . 2 ~  

(4.2b 

( 4 . 2 ~  

The general matrix Riccati equation with variable coefficient matrices has been studied 
recently from the viewpoint of fundamental sets of solutions and superposition formulae 
(Harnad et a1 1983, del Olmo et a1 1987). Therefore A = 0 if 

(4.3a) 

(4.3b) 

A ,  + B ,  P z +  B 2 P 2 +  D ,  P i +  D2Pl P2 = 0 

A2 + B3 PI  + B4P2 + D ,  PI P? + D2P: = 0. 
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We can eliminate Pz to get a quartic equation for PI. If PI is any root of this equation 
then Pz may be chosen so that (4.3) are satisfied and hence A = 0. We can also absorb 
C into B, as before. 

We therefore assume that A = 0 for constant-coefficient equations (4.1) and the 
solutions are then of the form (3.21). Since the integrals in (3.21) with constant 
coefficients are trivial, the solution of (4.1) is 

W ( x )  = exp(Bx)( W ( 0 )  - P){1- DB-'[exp(Bx) -1]}-' + P (4.4) 

where we have taken U ( 0 )  = W ( 0 )  - P, V ( 0 )  = 1 and C = 0. The corresponding solutions 
for y ( x )  and z ( x )  have a simple form when the diagonal part of the matrix 

commutes with the antidiagonal part. A sufficient condition for this to happen is that 
Bi = Bi;  then if B;B;  = A >  with A real, 

exp(Bx) = exp( B ;x )  (80; Bo') sinh Ax] 

while if B i B ;  = - A 2 ,  then 

(4.5a) 

(4.56) 

Substituting from (4.5) into (4.4), one obtains a solution of (3.1), subject to (3.176), 
in terms of either hyperbolic or  trigonometric functions of Ax. 

We shall use these methods to find explicit solutions for the particular equation 
(1.3) considered by Ervin et a /  (1984). We shall also illustrate how one would treat 
the general equation ( 1.1) with constant coefficients. For equation (1.31, the coefficients 
in (1.1) are 

E,, = 0 E ,  = 3 y +  1 F,,= c F, = F. = 0 F, = 3 7  - 1. (4.6) 

Choosing A ,  = 0, B ,  = 6, Bz = 1 in (2.11, and using (2.61, (2.7) and (2.4a, 61, we find 
that the two choices of D, , D4 are 

D,= - 2  Dl = - 1 1 3 ~ -  1 )  (4 .7a )  

and 

D , = - ( 3 y - 1 )  D , = - 1  (4.76) 

while 

B4=-6 A ? = - c  B ,  = -6' 

D2= D,= D,=O D , = h ( D , - D l ) .  (4.8) 
Ervin er al (1984) found exact solutions of their equation for three values of y. 

One value was y = :, for which (4.7) gives either D, = 0 or D, = 0. With these values 
for the coefficients and the choice 6 = 0, equations (3.1) with (4.7n) become 

1.1 = z z = - c -  2yz 

while (3.1) with (4.76) give 

(4 .9a)  
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Both pairs of equations (4.9) have the integral 

y '  = -cx - y ?  + Cg 

where co is a constant of integration; this equation can be used to give the solution 
with y = f found by Ervin et al. 

The conditions for a system (3.1) to be a Lie system are (3.17b). If D,= D , ,  then 
(4.8) ensures that D3 = 0, so that we only require D, = D ,  . So the system defined by 
( 4 . 7 ~ )  is a Lie system when 3 y  - 1 = 4, or y = ;; that defined by (4.76) is a Lie system 
if y = :. These are precisely the other two values of y for which Ervin et a1 obtained 
solutions; for each value, the coefficients in (1.1) satisfy (1.10). We now show how 
their solutions can be obtained using the methods of this section. 

Consider first the value y = $. Substituting in (4.7u, b) we obtain the values 0, = 
D ,  = -2 or D,= -4, D, = -1. This exemplifies the important fact that only one of the 
sets of first-order equations are of projective Riccati type, with D, = D,. We shall 
discuss the 'non-Riccati' first-order system later. 

Using the values given by ( 4 . 7 ~ )  and (4.8), equations (4.3) become 

bP ,+  P?-2P;=O - C  - b' PI - bP2 - 2 PI Pz = 0. (4.10) 

In the notation of Ervin et a/, c = i F ' ;  then a solution of (4.10) is PI = -fF, P. = 
t F (  b + F). Substituting these values of P I ,  P. and D ,  = D, = -2 in (4.8) and (4.2), we 
find 

C = ( F )  D = ( - 2  0).  (4.11) 

We now choose b = -fF, so that the diagonal elements of B are equal. The product 
of the antidiagonal elements is then =:F'= - A 2 ,  say. The solution of (1.11) is then 
given by (4.4) and (4.5b) with A = *& 3 F  and with C absorbed' into B by taking C = 0 
and 

(4.12) 

After some tedious but elementary matrix algebra, one obtains the following solution 
for the first component of W ( t ) :  

y ( t ) =  P,+exp(B;x ) [ (y (O) -P , )  cos A x + A  ' ( z ( O ) - P , )  sin A A ]  

x ( 1  - ( B Y 2 - B ; B ? )  '{D,B;[(exp(B;x) cos A x -  l ) ( j > ( O ) - P , )  

- exp( B;'x)A - ' B y (  z ( 0 )  - P.) sin A x ]  

- D,By[(exp(BY.x) cos Ax- l ) ( z ( O ) -  P 2 )  

+exp(B;x)A 'BF(y(0)- P I )  sin A x ] } )  I (4.13) 
where B:' are the elements of B given in (4.12), P,  = -iF, P2 = : F 2  and A = l J 3 F .  The 
initial value z ( 0 )  is obtained from (2.10) using the coefficients giken in (4.6) and (4.7) 

z ( O ) = J . ' ( O )  - b>*(0 )+2~ , (0 ) ' .  (4.14) 
Therefore (4.13) and (4.14) give the solution of (1.3) when y =;; for prescribed 

values of ~ ( 0 1 ,  ~ ' ( 0 ) .  Comparing this with the solution given by Ervin et a /  (1984) in 
their equation (29),  we see that our  solution (4.13) has exactly the same functional 
form. Since the solutions also satisfy the same initial conditions, they must be identical. 

- 
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Exactly the same procedure may be followed when y = f .  Then the solution (2.6) 
corresponding to the projective Riccati equation is D ,  = D, - 1 while the other 
solution is D, = 2, D ,  = -f. Assuming D, = D4 = -1 and substituting from (4.7), (4.3) 
becomes 

bP,+P,-P:=O -4F3-b2P,-bP2-P,P,=0.  (4.15) 

A solution of (4.15) is 
p 1 -  - - 2 - 1 / 3 ~  

The matrix coefficients in (4.1) become 

p 2 -  - 2-2/3F2+2-1/3 b F. (4.16) 

C = 2 - 1 / 3 ~  D = ( - 1  0). (4.17) 

The diagonal elements of B are equal when we take 6 = -F/2,/'; then the product 
of the antidiagonal elements is -3 F2/28/3 = - A 2 .  The solution of (1.1 1) is then given 
by (4.13) with A =31'2F/24'3; P I ,  P2 are given by (4.16) and the B; are the elements 
of B after 'absorption' of C, which gives 

The initial value of z(x)  given by ( 2 . 1 ~ )  is now 

z ( O ) = y ' ( O )  - by(0)+y(O)2. 

(4.18) 

(4.19) 

The solution is again identical to that given by Ervin er a1 (1984), now with y = $. 

5. A Hamiltonian system 

We have seen that an equation of form (1.1) generally corresponds to two sets of 
equations of form (3.1). In particular, when one set is a Lie system, the other is not. 
However, some equations of form (1.1) can be derived from a Lagrangian and we are 
accustomed to a one-to-one correspondence between second-order Lagrangian 
equations and first-order Hamiltonian equations. In this section, by examining a simple 
example, we shall show how this apparent contradiction is resolved. 

The Lagrangian 

(5.1) L = +yjz + ;yz  + f p j i s  + * 
Y 

with A and p constant, gives rise to the second-order equation 

(5.2) 
2 2 3  ~ " - y - ~ * y  - A  *y = O  

of the form (1.1). When p =0,  (5.2) is of the form (1.2), and is invariant under the 
transformation y + -y. The corresponding first-order Riccati type systems are 

y ' = z +  D,y2  (5.3a) 

z ' = y + p y ' +  D,yz (5.3b) 

where 

D ,  = *2-'/'A D, = T2'l2A. (5.4) 
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The Hamiltonian corresponding to (5.1) is 

(5.5) 

giving rise to the Hamiltonian equations 

Y '=P  ( 5 . 6 ~ )  

p '  = y +  p y 2 +  A2y'. (5.6b) 

It is easy to check that these canonical equations are compatible with (5.3) for both 
choices of sign in (5.4). This is because A appears in (5.6) only in the form A > .  

For given (y, z ) ,  the velocity vector (y',  z') depends upon the choice of sign in (5.4). 
So the different signs give different sets of trajectories in the (y, z)  plane; when p = 0, 
the two sets of trajectories are related by the central inversion ( y ,  z )  + (-y, - z ) .  But 
in the (y, p )  phase plane, (5.6) define a unique set of trajectories. 

Therefore, if we question whether there are one or two sets of trajectories for a 
Hamiltonian system giving rise to an  equation of form ( l . l ) ,  then the answer is that 
it depends on the choice of variables used to describe the system. 

6. Conclusions 

We have considered here the factorisation of the second-order non-linear differential 
equation (1.1) into a pair of coupled first-order equations (1.9) of Riccati type. Our 
results may be summarised as follows. 

( a )  The factorisation into coupled equations of the form (1.9a, b )  with D2 = D, = 
D6 = 0 is always possible. 

( b )  There are then three further coefficients which may be chosen arbitrarily; it 
was found most convenient to take these to be A , ,  B , ,  B 2 ,  with BZ # 0. 

( c )  There remains a twofold choice of first-order equations corresponding to the 
two sets of values for D , ,  D4 given by (2.6). The different choices d o  not give new 
solutions of ( l . l ) ,  but give different partner functions z to y related by (3.19). 

( d )  Conditions (1.10) on the coefficients of (1.1) ensure that the corresponding 
first-order equations are of Lie type. When these equations are both non-linear and 
do  not decouple, the associated Lie algebra is sl(3, R ) .  The related second-order 
equation is then of bi-Riccati form (1.5). 

( e )  The first-order equations of Lie type can be written in matrix Riccati form and 
integrated formally in the standard way. Consequently for constant-coefficient 
equations (1 . l ) ,  solutions are obtained in terms of trigonometric or hyperbolic functions. 
For the particular equation (1.31, these reduce to the solutions found by Ervin er al 
(1984) when A = 3 or $. 

(. f)  Examples of equations (1.1) derivable from a Lagrangian have been discussed 
and a comparison made between the corresponding first-order equations (1.9) and the 
Hamiltonian equations which are also equivalent to (1.1). 

Conditions (1.10) determine whether (1.1) can be reduced to a first-order Lie system. 
The system is then quite well understood, and (1.1) is of bi-Riccati form. When the 
Lie conditions are not satisfied, the corresponding first-order systems are much less 
manageable, and there exists no general mathematical method for finding and classify- 
ing their solutions. 
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